
Verifying Fault-tolerance in
Parameterised Multi-Agent Systems

Work by Panagiotis Kouvaros1,2 and Alessio Lomuscio1

Presented by Edoardo Pirovano1

1Imperial College London, UK

2University of Naples, Italy

FRIDA 2017 - 16 October 2017

Based on material in:
P. Kouvaros, A. Lomuscio. Verifying Fault-tolerance in Parameterised Multi-Agent
Systems. Proceedings of the 26th Conference on Artificial Intelligence (IJCAI17).

Melbourne, Australia. 288-294. AAAI Press.

Outline

1 Introduction

2 Parameterised Model Checking Problem (PMCP)

3 Parameterised Fault Tolerance Problem (PFTP)

4 Solving PFTP by encoding it in PMCP

5 Implementation and Application

6 Conclusion

Formal Verification of MAS

Concerned with showing that a MAS is correct with respect to its
specifications.
Specifications formally expressed in temporal, epistemic, strategic
languages.
Considerable amount of work from 2000, both theoretical
investigations (complexity, etc.) and practical algorithms.
Implementations including MCMAS (Imperial), MCK (UNSW), Verics
(Warsaw).
Applications in robotics, services, security, etc.

Limitation: number of agents fixed at design time.

Introduction Verifying Fault-tolerance in Parameterised Multi-Agent Systems 3 / 36

Robot Swarms

Introduction Verifying Fault-tolerance in Parameterised Multi-Agent Systems 4 / 36

Unbounded MAS

Behaviourally identical agents following simple protocols.

Agents may interact in subtle ways thereby displaying emergent
properties that are difficult to predict, yet important to establish.

Traditionally unbounded/open MAS are analysed via optimisation
techniques and simulations. Both have limitations.

Key question: Do specifications hold irrespective of the number of
agents in the system?

Theoretical challenge: Verifying unbounded MAS is undecidable.

Introduction Verifying Fault-tolerance in Parameterised Multi-Agent Systems 5 / 36

Parameterised Model Checking for MAS

A technique to reason about MAS irrespective of the number of
components.
Parameterised Model Checking Problem:

∀n ≥ |J | : S(n) |=
∧
J

φ(J)

Originally introduced in analysis of networked systems and distributed
systems.
Several techniques recently studied in the context of MAS, including
cutoffs [KL13] and counter-abstraction [KL15a].
Applications in robot swarms [KL15b, KL16a], security [BKL16],
data-aware systems [BKL17].

Open source model checker MCMAS-P available for download.

Introduction Verifying Fault-tolerance in Parameterised Multi-Agent Systems 6 / 36

Limitations of PMC

1 Sound but incomplete techniques.
2 Undecidability hinders applicability in certain settings.
3 As with plain model checking, PMC can “only” formally assess the

correctness of a system against a specification.

But how can we assess the robustness of an unbounded MAS
against faults, malfunctions, or unwanted behaviours of some of its
components?

Introduction Verifying Fault-tolerance in Parameterised Multi-Agent Systems 7 / 36

Just “How Robust” is my MAS?

PMC may enable us to show that the flock will remain connected
irrespective of how many agents populate it.

Introduction Verifying Fault-tolerance in Parameterised Multi-Agent Systems 8 / 36

Just “How Robust” is my MAS?

But what happens if one or more agents deviate from the expected
behaviour?

Introduction Verifying Fault-tolerance in Parameterised Multi-Agent Systems 9 / 36

Outline

1 Introduction

2 Parameterised Model Checking Problem (PMCP)

3 Parameterised Fault Tolerance Problem (PFTP)

4 Solving PFTP by encoding it in PMCP

5 Implementation and Application

6 Conclusion

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 10 / 36

Agents

Definition (Agent Template)
The agent template T = 〈L, ι, Act, P, t〉 defines a non-empty set of local
states L, a unique initial state ι ∈ L, and a non-empty set of actions
Act = A ∪AE ∪GS . Each action is either an asynchronous action (A) or
an agent-environment action (AE) or a global-synchronous action (GS).
The actions are performed in compliance with a protocol P : L→ P(Act)
that selects which actions may be performed at a given state. The
evolution of the local states is characterised by a transition function
t : L×Act→ L returning the next local state given the current local state
and the action performed at the state.

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 11 / 36

Environment

Definition (Environment)
The environment e = 〈Le, ιe, Acte, Pe, te〉 is associated with a non-empty
set of local states Le, a unique initial state ιe ∈ Le, a non-empty set of
actions Acte = Ae ∪AE ∪GS , a protocol Pe, and a transition function te.

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 12 / 36

Parameterised Interleaved Interpreted Systems

A parametrised interleaved interpreted system (PIIS) is a finite
number of agent templates, together with an environment and a
labelling function that assigns which from a set of atomic propositions
(each of which can be global or local, more on this later) are true at
which states of the agent.

PIISs describe an unbounded family of concrete IIS, each one
obtained by setting the parameter prescribing to the number of
agents in the system. Given a PIIS S with one agent template and an
integer n ≥ 1, the IIS S(n) of n agents is the result of the
composition of n copies of the agent with the environment (we will
describe this composition in more detail soon).

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 13 / 36

Train-gate controller

The scenario concerns a number of trains wishing to enter a tunnel
(one at a time) and a controller that governs which trains can enter.

Some trains are prioritised and can enter the tunnel whenever it is
free. Normal trains, on the other hand, can only enter the tunnel
when no prioritised trains are waiting.

We will model the system by agent templates of two roles
representing the two types of trains and an environment template
representing the controller.

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 14 / 36

Train-gate controller

Figure: The PIIS for the train-gate controller. Note p_enter and p_exit are
agent-environment actions, n_lock and p_lock are global-synchronous actions,
and p_approach and n_approach are asynchronous actions.

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 15 / 36

Global states and transitions

Given a parametrised system and a number n ≥ 1 for each of the
agent templates, we can build a concrete system representing the
composition of these along with an environment.
This global system performs one action at each step and it is either:

Asynchronous: Precisely one agent or the environment changes state
on its own. All others remain in the same state.
Agent-environment: One agent and the environment perform the
action at the same time and change state accordingly. The other
agents remain in the same state.
Global-synchronous: All agents and the environment perform the
action at the same time and change state accordingly.

The labelling function on global states has a predicate (p, i) hold if a
local atomic proposition p is true for the local state of agent i in that
global state. For a global atomic propositions q we instead require it
to be true at the local state of all the agents.

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 16 / 36

Syntax of IACTLK\X

Definition (IACTLK\X formulae)
Given a set IND of indices, a set L_AP of local atomic propositions and a
set G_AP of global atomic propositions, IACTLK\X formulae are defined
by the following BNF grammar:

φ ::= (p, v) | ¬(p, v) | q | ¬q | φ ∧ φ | φ ∨ φ | A(φUφ) |
A(φRφ) | Kvφ | ∀v : φ

where p ∈ L_AP, q ∈ G_AP, and v ∈ IND.

An IACTLK\X formula is said to be a sentence if every variable appearing
the formula is in the scope of a universal quantifier. Hereafter we consider
only sentences.

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 17 / 36

Parameterised Model Checking Problem

Definition (PMCP)
Given a PIIS S and an IACTLK\X formula φ, the parameterised model
checking problem (PMCP) is the decision problem of determining whether
the following holds:

S(n) |= φ for every n > 1.

If this holds, then φ is said to be satisfied by S; this is denoted by S |= φ.

The PMCP is in general undecidable. Nevertheless restrictions can be
imposed on the systems leading to decidable problems.

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 18 / 36

Cut-Offs

One class of models for which the PMCP is decidable is those in
which there is an agent-environment simulation.

Informally, this means the way the agent and environment templates
interact means that the environment behaves like a mutual exclusion
controller, with actions representing taking a lock on a resource and
only one agent holding a lock on each resource at any given time.

In this case, it is possible to compute a cut-off, which is a bound on
the size of the systems we need to check because any system with
more agents than this can be simulated by a smaller system. This
restores decidability.

This was the case in, for example, our earlier train-gate controller
example.

Parameterised Model Checking Problem (PMCP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 19 / 36

Outline

1 Introduction

2 Parameterised Model Checking Problem (PMCP)

3 Parameterised Fault Tolerance Problem (PFTP)

4 Solving PFTP by encoding it in PMCP

5 Implementation and Application

6 Conclusion

Parameterised Fault Tolerance Problem (PFTP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 20 / 36

Fault Injection

We can construct a faulty PIIS Sf = 〈(T, T f), ef , V f 〉 from a given
nominal PIIS S = 〈T, e, V 〉 by adding a second agent template that can,
in addition to performing all the usual actions, perform some faulty actions
according to some failure modes. We consider the following failure modes:

Boolean faults encode behaviours where a Boolean variable can
erroneously get inverted, non-deterministically updated, or stuck at its
current value.
Integer faults represent situations where an integer variable is
erroneously increased, decreased, or not updated as it should.
Enumerate faults encode transitions where the value of an enumerate
variable is replaced by a different value incorrectly, or not updated
when it should have been.

The environment can also similarly mutated to produce a faulty
environment.

Parameterised Fault Tolerance Problem (PFTP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 21 / 36

Notions of fault-tolerance

Given a specification φ in IACTLK\X, we can investigate whether the
mutated system satisfies various notions of fault tolerance including:

φTT , AGφ (Total Tolerance)

φR , AG(injected → AFφ) (Recoverability)

φR , AG(injected → AFKiφ) (Diagnosability)

Parameterised Fault Tolerance Problem (PFTP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 22 / 36

Notions of fault-tolerance

The key question we would like to answer is “How many faulty agents
does it take for a specification to become unsatisfied?”

φBT , AG(faulty≤1/λ → φ) (Bounded Tolerance)

φIT , AG(injected≤1/λ → φ) (Intermittent Tolerance)

where 1/λ is the ratio of faulty agents in the system.

Equally we can express notions of recovery in terms of a ratio 1/λ.

Parameterised Fault Tolerance Problem (PFTP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 23 / 36

The Parameterised Fault-Tolerance Problem

Definition (PFTP)
Given a MAS S, a natural number λ, and an IACTLK\X formula φ, the
parameterised fault-tolerance problem (PFTP) is the decision problem of
determining whether the following holds:

Sf
(
(n, nf)

)
|= φ for every n ∈ N, nf ∈ N with nf = bn/λc.

If so, we say Sf |=λ φ.

So the PFTP returns “yes”, if all (infinitely many) MAS where the
proportion of faulty agents is up to 1/λ comply with φ.

Parameterised Fault Tolerance Problem (PFTP) Verifying Fault-tolerance in Parameterised Multi-Agent Systems 24 / 36

Outline

1 Introduction

2 Parameterised Model Checking Problem (PMCP)

3 Parameterised Fault Tolerance Problem (PFTP)

4 Solving PFTP by encoding it in PMCP

5 Implementation and Application

6 Conclusion

Solving PFTP by encoding it in PMCP Verifying Fault-tolerance in Parameterised Multi-Agent Systems 25 / 36

Solving the PFTP

We will show to construct, given a PIIS S and a λ ∈ N, a new PIIS Sλ
such that the following theorem holds:

Theorem
Let S be a MAS, λ ∈ N, and φ an IACTLK\X formula. The following
holds: Sf |=λ φ iff Sλ |= φ.

Then, Sλ |= φ can be established via PMC (using, for example,
MCMAS-P) to solve the PFTP.

Solving PFTP by encoding it in PMCP Verifying Fault-tolerance in Parameterised Multi-Agent Systems 26 / 36

Encoding PFTP in PMCP

init

nominal

faulty

T

Tf

init_X

init_X

init_n

init_f

(a) Agent template.

nominal_1

nominal_2

nominal_λ

ef

init_n

init_n

init_n

init_f

init_X

init_X

init_X

(b) Environment template.

Figure: Our construction of a PIIS to solve the PFTP. Here, init_n and init_f are
new agent-environment actions that make an agent either faulty or non-faulty.
init_X is a new global synchronous action that ends the initialisation phase.

Solving PFTP by encoding it in PMCP Verifying Fault-tolerance in Parameterised Multi-Agent Systems 27 / 36

Outline

1 Introduction

2 Parameterised Model Checking Problem (PMCP)

3 Parameterised Fault Tolerance Problem (PFTP)

4 Solving PFTP by encoding it in PMCP

5 Implementation and Application

6 Conclusion

Implementation and Application Verifying Fault-tolerance in Parameterised Multi-Agent Systems 28 / 36

Implementation

Implemented a toolkit called MCMAS-PFI on top of MCMAS-P. Its
inputs are agent templates, agent mutation rules (which of the failure
modes we wish to apply and to which variables), λ, and specifications.

MCMAS-PFI constructs the mutated agent and environment, as
described in previous slide and then checks the specification using
MCMAS-P.

Used this to assess the Alpha aggregation algorithm.

Implementation and Application Verifying Fault-tolerance in Parameterised Multi-Agent Systems 29 / 36

The Alpha Aggregation Algorithm

The alpha aggregation algorithm is an algorithm designed to make
robots in a swarm group together. We assume the robots move on a
two-dimensional arena and communicate with their peers via a
wireless sensor of limited range. The arena is assumed to be finite
and wrap around.

We define a robot to be in another robot’s neighbourhood if the
position of the former is in the range of the latter’s sensor. Each
robot keeps track of the number of its neighbours. This determines
the robots’ connectedness statuses. Specifically, a robot is said to be
connected if its neighbourhood is composed of at least α robots, for a
threshold α.

Implementation and Application Verifying Fault-tolerance in Parameterised Multi-Agent Systems 30 / 36

The Alpha Aggregation Algorithm

The behaviour of each of the robots is characterised by their
connectivity status and by whether they are in forward motion mode
or in coherence motion mode:

if a robot is in forward mode and connected, then it moves forward

if it is in forward mode, but not connected, then it performs a 180◦

turn and changes its motion mode to coherence

if it is in coherence mode, but not connected, then it moves forward

if it is in coherence mode and connected, then it performs a random
90◦ turn and changes its motion mode to forward.

Implementation and Application Verifying Fault-tolerance in Parameterised Multi-Agent Systems 31 / 36

Fault injection example

FaultInjection
ratio=3;
stuck(connected); invert(connected);
stuck_at(motion, coherence); update(direction,null);

end FaultInjection

Figure: A snippet that exemplifies our modelling language when used to encode
potential faults in the Alpha algorithm.

We consider the following faulty behaviours:
Direction failures: Either a robot becomes unable to change direction,
or it adopts the wrong direction.
Detection failures: A robot fails to detect some of the robots in its
neighbourhood.
Motion failures: The motion mode of a robot may not be updated as
it should.

Implementation and Application Verifying Fault-tolerance in Parameterised Multi-Agent Systems 32 / 36

Results

Having encoded the Alpha aggregation protocol and possible faults in
it, we checked the specification:

φAA , ∀v : KvGF (connected, v)
This expressed the connectedness property that every nominal robot
knows that it will be infinitely often connected.

This held for λ = 4 but not for λ = 3, telling is that if more than
approximately a third of agents are faulty (under the three failure
modes we described), the algorithm no longer meets its intended
specification.

Implementation and Application Verifying Fault-tolerance in Parameterised Multi-Agent Systems 33 / 36

Outline

1 Introduction

2 Parameterised Model Checking Problem (PMCP)

3 Parameterised Fault Tolerance Problem (PFTP)

4 Solving PFTP by encoding it in PMCP

5 Implementation and Application

6 Conclusion

Conclusion Verifying Fault-tolerance in Parameterised Multi-Agent Systems 34 / 36

Conclusions

A technique to formally reason about the consequences of faults on
infinitely many MAS sharing predetermined template behaviours.

Faults are injected automatically into correct templates.

PFTP solved via PMCP.

Implementation (MCMAS-PFI) available as an extention to
MCMAS-P.

Future work will look at synthesis a value for λ given a specification
and further applications to swarm analysis.

Conclusion Verifying Fault-tolerance in Parameterised Multi-Agent Systems 35 / 36

Questions?

	Introduction
	Parameterised Model Checking Problem (PMCP)
	Parameterised Fault Tolerance Problem (PFTP)
	Solving PFTP by encoding it in PMCP
	Implementation and Application
	Conclusion

